

Adobe Technical Journal
Color Services and the Color Picker Plug-in
Rev. 2

Andrew Coven
Photoshop Developer Support Engineer
Adobe Systems, Incorporated

gapdevsup@adobe.com

Introduction
Color Services and the Photoshop 4.0 Color Picker plug-in

The Adobe® Photoshop® 4.0 application programming interface introduces a
new plug-in type: Color Picker plug-ins. Color Picker plug-ins allow you to
develop and implement your own style of custom color picking mechanism,
with the goal to provide similar results and functions to the Photoshop or OS
Color Pickers. While the new Color Picker plug-in architecture is very
straightforward, the Color Services suite, a long-time complex and
inconsistent architecture, has been a bit of a mystery. This article will detail
the Color Services suite of functions and structures, and discuss the mechanics
of the Color Picker plug-in module.

Scope of this article

Refer to the SDK

Intimate details on all the parameters and callback suites are available in the
Adobe® Photoshop® 4.0.1 SDK, which is available at Adobe’s web site:

http://www.adobe.com/supportservice/devrelations/sdks.html

This article will only address the callbacks and structures that are pertinent to
the Color Services suite and the Color Picker plug-in module. There is much
more than is covered in this document. Read the SDK for more detail.
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 1

Macintosh or Windows?

Color Services, chosing a color, converting between color spaces, and Color
Picker plug-in modules are all part of the Adobe Photoshop API. This means
that, except in a few rare exceptions and in the specific cases of opening
dialog windows and other platform resources, the callbacks, data structures,
and parameters are all exactly the same on both Macintosh and Windows.
This article shows Macintosh user interface examples, but the discussion and
examples are comparable, if not exactly the same, on Windows.

Color Services Suite
The Color Services suite is a set of functions that are specific to working with
color data. The suite is used to perform any of four operations:

1. Return a sample point.

2. Return either the foreground or background color.

3. Choose a color using the user’s preferred Color Picker (which, in
Photoshop 4.0, can be a custom Color Picker via a plug-in).

4. Convert a color from one space to another.

The next sections of this article will discuss each operation in detail.

Returning a sample point

Returning the current sample point is one of the more straightforward of the
Color Suite’s functionality. All basic Color Suite functions are accessed and
triggered by handing a filled-out ColorServicesInfo struct to the Color
Services callback. The ColorServicesInfo struct is defined as:

Figure 1: ColorServicesInfo struct

typedef struct ColorServicesInfo
{

int32 infoSize; // Size of ColorServicesInfo record.
int16 selector; // Operation.
int16 sourceSpace; // Color space of input color.
int16 resultSpace; // Color space of output color.
Boolean resultGamutInfoValid; // Has resultInGamut field been set?
Boolean resultInGamut; // Is returned color in gamut for printing?
void *reservedSourceSpaceInfo; // Must be NULL.
void *reservedResultSpaceInfo; // Must be NULL.
int16 colorComponents[4]; // Actual components of input or output color.
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 2

void *reserved; // Must be NULL.
union
{

Str255 *pickerPrompt; // Picker prompt string.
Point *globalSamplePoint; // Where to sample.
int32 specialColorID; // ID of which color to return.

} selectorParameter;
}

You can fill this struct out yourself, however there is a routine to initialize a
ColorServicesInfo struct to typical values. The routine is in the PIUtilities
library, which is the PIUtilities.c and PIUtilities.h files in the
Photoshop SDK’s Examples/Common folder:

Figure 2: CSInitInfo routine

OSErr CSInitInfo (ColorServicesInfo *ioCSinfo)
{

OSErr err = noErr; // Assume no error, initially.

if (ioCSinfo != NULL)
{

// Zero color components:
CSSetColor(ioCSinfo->colorComponents, 0, 0, 0, 0);

// Selector is one of these:
// plugIncolorServicesChooseColor,
// plugIncolorServicesConvertColor,
// plugIncolorServicesSamplePoint,
// plugIncolorServicesGetSpecialColor:
ioCSinfo->selector = plugIncolorServicesConvertColor;

// sourceSpace and resultSpace can be:
// plugIncolorServicesRGBSpace,
// plugIncolorServicesHSBSpace,
// plugIncolorServicesCMYKSpace,
// plugIncolorServicesLabSpace,
// plugIncolorServicesGraySpace,
// plugIncolorServicesHSLSpace,
// plugIncolorServicesXYZSpace
// resultSpace could also be: plugInColorServicesChosenSpace, in
// that case, resultSpace will return with the users’ chosen space:
ioCSinfo->sourceSpace = plugIncolorServicesRGBSpace;
ioCSinfo->resultSpace = plugIncolorServicesChosenSpace;
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 3

// Private data. Must be NULL or you’ll receive an error:
ioCSinfo->reservedSourceSpaceInfo = NULL; // Must be NULL.
ioCSinfo->reservedResultSpaceInfo = NULL; // Must be NULL.
ioCSinfo->reserved = NULL; // Must be NULL.

// Typical operation is choose a color or show the picker:
ioCSinfo->selectorParameter.pickerPrompt = NULL;

// Size parameter easily filled by taking size of structure:
ioCSinfo->infoSize = sizeof(*ioCSinfo);

}
else
{

// You have to pass a ColorServicesInfo struct pointer. If you didn’t,
// this function returns a missing parameter error:
err = errMissingParameter;

}

return err;

} // end CSInitInfo

CSInitInfo provides a function to reset and validate your initial
ColorServicesInfo struct. Then you can set it up to tell the Color Services
routine to grab a sample point. Figure 3 is a routine to return the first point
in a window, in RGB space (regardless of what space the image is in).

Figure 3: GetSamplePoint routine

void GetSamplePoint (globals,
*outSampleColorArray)

{

OSErr err = noErr; // Assume no error, initially.

// First make sure the ColorServices suite is available, and pop an alert if not:
if (WarnColorServicesAvailable())

{ // was available. Go ahead and do this.

// (1) Create the structure variable and the sample point location:
ColorServicesInfo csInfo;

// (2) Initialize the structure and check for any errors:
err = CSInitInfo(&csInfo);

if (err == noErr)
{

// No errors. Do this.
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 4

// Lets go ahead and create a sample point to use. This can
// be whatever you need, including examining the image’s
// size and using values from that:
Point myPoint = { 1, 1 };

// (3) Override the default selector with the sample point command:
csInfo.selector = plugIncolorServicesSamplePoint;

// (4) Our source space has been inited to RGBColor.
// So now, just set our selectorParameter to sample:
csInfo.selectorParameter.globalSamplePoint = &myPoint;

// (5) Call the proc using the macro from PIUtilities:
// #define ColorServices(info) (*(gStuff->colorServices)) (info)
err = ColorServices(&csInfo);

if (err == noErr)

{

// Got the sample point. Return its data.

// *outSampleColorArray is simply an array of four int16s.
// Lets use the PIUtilities CSCopyColor routine to copy the
// returned values into the outgoing array:
CSCopyColor(colorComponents, outSampleColorArray);

// outSampleColorArray[0] = red,
// outSampleColorArray[1] = green,
// outSampleColorArray[2] = blue,
// outSampleColorArray[3] = undefined.

}

} // err

} // ColorServices available

return err;

} // end GetSamplePoint

CSCopyColor , called from GetSamplePoint is defined in PIUtilities and
broken out in Figure 4.

Figure 4: CSCopyColor routine

OSErr CSCopyColor (int16 *outColor, const int16 *inColor)
{

short loop;
OSErr err = noErr;
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 5

if (outColor != NULL && inColor != NULL)
{

for (loop = 0; loop < 4; loop++)
{

outColor[loop] = inColor[loop];
}

}
else
{

// If the function was passed bad pointers, it will return
// a missingParameter error:
err = errMissingParameter;

}

return err;

} // end CSCopyColor

CSCopyColor , in other words, is a fairly straight-forward copy routine from
one four-element int16 array to another.

Returning the foreground or background color

In many cases, returning the foreground or background color from the Color
Services suite is harder than just grabbing it from the parameter block. For
instance, the Filter parameter block has two parameters defined for the
background and foreground colors, in the color space native to the image:

FilterColor backColor;
FilterColor foreColor;

See PIFilter.h for more details.

Some parameter blocks, however, such as the Export parameter block, do not
provide values for the foreground and background colors. In that case you’d
want to use the Color Services suite to provide that information. Here’s a
sample routine to return the Foreground and Background colors in two color
arrays:

Figure 5: GetForeAndBackColors routine

void GetForeAndBackColors (globals,
*outForeColorArray,
*outBackColorArray)

{

OSErr err = noErr; // Assume no error, initially.
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 6

// First make sure the ColorServices suite is available, and pop an alert if not:
if (WarnColorServicesAvailable())

{ // Available. Go ahead and do this.

// (1) Create the structure variable and the sample point location:
ColorServicesInfo csInfo;

// (2) Initialize the structure and check for any errors:
err = CSInitInfo(&csInfo);

if (err == noErr)

{ // No errors. Do this.

// (3) Override the default selector with the get special color command:
csInfo.selector = plugIncolorServicesGetSpecialColor;

// (4) Our source space is inited to RGBColor.
// So now, just set our selectorParameter to one of the colors:
csInfo.selectorParameter.specialColorID =

plugIncolorServicesForegroundColor;

// (5) Call the proc using the macro from PIUtilities:
// #define ColorServices(info) (*(gStuff->colorServices)) (info)
err = ColorServices(&csInfo);

if (err == noErr)
{

// Got the sample point. Return its data.

// *outForeColorArray is simply an array of four int16s.
// Lets use the PIUtilities CSCopyColor routine to copy the
// returned values into the outgoing array:
CSCopyColor(colorComponents, outForeColorArray);

// (6) Now lets get the background color:
csInfo.selectorParameter.specialColorID =

plugIncolorServicesBackgroundColor;

err = ColorServices(&csInfo);

if (err == noErr)
CSCopyColor(colorComponents, outBackColorArray);

} // err @ ColorServices

} // err @ CSInitInfo

} // ColorServices available

return err;
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 7

} // end GetForeAndBackColors

The colors will be returned with the array, in the case of RGB, initialized to:

1. array[0] = red,

2. array[1] = green,

3. array[2] = blue, and

4. array[3] = undefined.

Each element is a number from 0 to 255, 255 being the most saturated and 0
indicating an absence of that color.

The parameters of the different color spaces will be discussed later, when
converting from one color space to another. First, let’s look at how a user
would pick a new color.
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 8

Choosing a color

There are times when you’ll want a user to pick a color so that your filter or
similar plug-in can use it for an effect. The Color Services suite provides a
selector, plugIncolorServicesChooseColor , which pops the users’ chosen
color picker. The user chooses a color picker via the File » Preferences »
General preference panel.

In this panel the user can choose between the OS color picker (Windows or
Apple), the Photoshop color picker, and any plug-in Color Picker modules. In
the example in Figure 1, there is a plug-in color picker called “NearestBase”
which is the additional selection.

The examples in this article show the default, the Photoshop color picker.

Now all you need is a routine to pop that picker and return the color. There’s
already one in PIUtilities with its cover macro, CSPickColor .
CSPickColor pops the color picker and returns the users’ chosen space and
color. You could force CSPickColor to always return a specific space, but it’s

Figure 6: Selecting a color picker from the Photoshop General Preferences Panel
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 9

preferable to be flexible and convert the color to the target space after its
returned.

CSPickColor takes a color space and color as input, since the picker does
have to default to something in its initial dialog settings. Another input value
is the prompt string which is displayed at the top of the picker.

Figure 7: CSPickColor routine

OSErr HostCSPickColor (ColorServicesProc proc,
const Str255 inPrompt,
int16 *ioSpace,
int16 *ioColor)

{

OSErr err = noErr; // Assume no error, initially.

if (HostColorServicesAvailable(proc))

{ // Color Services are available. Now populate color services info with stuff.

if (ioColor != NULL && ioSpace != NULL)

{ // Parameters good.

ColorServicesInfo csinfo;

// Initialize our info structure with default values:
err = CSInitInfo(&csinfo);

if (err == noErr)

{ // Init went fine. Now override default values with our own:

// (1) Set selector to choose color and prompt string:
csinfo.selector = plugIncolorServicesChooseColor;
csinfo.selectorParameter.pickerPrompt = (Str255 *)inPrompt;

// (2) Set initial color components in source:
csinfo.sourceSpace = *ioSpace;
CSCopyColor (csinfo.colorComponents, ioColor);

// (3) Call convert routine with this info:
err = (*proc)(&csinfo);

// (4) If no error, copy the converted colors and user-picked
// result space:
if (err == noErr)
{

CSCopyColor (ioColor, csinfo.colorComponents);
*ioSpace = csinfo.resultSpace;

} // copy

} // initinfo
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 10

} // outColor and outSpace

else

{ // outColor or outSpace pointer bad.
err = errMissingParameter;

}
}
else

{ // color services suite was not available
err = errPlugInHostInsufficient;

}

return err;

} // end HostCSPickColor

Calling CSPickColor will show a color picker such as in Figure 8.

In the case of Figure 8, the users’ choices in the Color Picker reflect, basically,
that the user picked nothing or reset everything to 0. Therefore, the return

Figure 8: Photoshop Color Picker
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 11

color will be {0, 0, 0, undefined} with a space of
plugIncolorServicesHSBSpace . Let’s assume, in this case, that you’ll want
to convert that color to the current color space of the document.

Converting between color spaces

What if you want to ask the user for a color then convert it into the
document’s color space? In a Filter plug-in, you can get the document’s color
mode from the parameter imageMode , which will be one of the supported
document image modes.

Once you know the image mode, you will want to find that same spaces’
entry for the Color Services suite. There is a facility in PIUtilities to do just
that: CSModeToSpace.

Figure 9: CSModeToSpace routine

int16 CSModeToSpace (int16 imageMode)
{

// Default to same space:
int16 space = plugIncolorServicesChosenSpace;

if (imageMode >= plugInModeBitmap && imageMode <= plugInModeRGB48)
{

/* static */ const int16 modePerSpace [] =
{

// Little array to map modes to color space values. Make this static if you have
// A4-global space set up (Macintosh 68k) and this will run faster.
// If you need A4-space and don't have it set up, and this is made
// static, you'll have garbage next time it's used:

/* plugInModeBitmap */ plugIncolorServicesChosenSpace,

/* plugInModeGrayScale */ plugIncolorServicesGraySpace,

/* plugInModeIndexedColor */ plugIncolorServicesChosenSpace,

/* plugInModeRGBColor */ plugIncolorServicesRGBSpace,

/* plugInModeCMYKColor */ plugIncolorServicesCMYKSpace,

/* plugInModeHSLColor */ plugIncolorServicesHSLSpace,

/* plugInModeHSBColor */ plugIncolorServicesHSBSpace,

/* plugInModeMultichannel */ plugIncolorServicesChosenSpace,

/* plugInModeDuotone */ plugIncolorServicesGraySpace,

/* plugInModeLabColor */ plugIncolorServicesLabSpace,

/* plugInModeGray16 */ plugIncolorServicesGraySpace,

/* plugInModeRGB48 */ plugIncolorServicesRGBSpace
};

space = modePerSpace[imageMode];

} // If unsupported mode, will return current space.
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 12

return space;

} // end CSModeToSpace

The call to CSModeToSpace is straightforward:

int16 currentSpace = CSModeToSpace(gStuff->imageMode);

The next step is converting from a given space to another. PIUtilities
contains another routine, HostCSConvertColor , with its accompanying
macro that you’ll want to use to call the routine, CSConvertColor , takes a
source space, a result space, and a color array, and returns the result space in
the color array, or an error if unable to convert the color or missing a
parameter.

Figure 10: CSConvertColor routine

OSErr HostCSConvertColor (ColorServicesProc proc,
const int16 sourceSpace,
const int16 resultSpace,
int16 *ioColor)

{
OSErr err = noErr;

if (HostColorServicesAvailable(proc))

{ // Color Services available. Now populate color services info with stuff:
if (ioColor != NULL)

{ // Parameter good.

ColorServicesInfo csinfo;

// Initialize our info structure with default values:
err = CSInitInfo(&csinfo);

if (err == noErr)

{ // Init'ed okay.

// Now override default values with our own.

// (1) Copy original to colorComponents space then
// set up space to convert from source to result:
err = CSCopyColor(&csinfo.colorComponents[0], ioColor);

if (err == noErr)

{ // Copied okay.
// (2) Set the source and result space:
csinfo.sourceSpace = sourceSpace;
csinfo.resultSpace = resultSpace;
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 13

// (3) Call the convert routine with this info:
err = (*proc)(&csinfo);

// (4) If no error, copy the converted colors:
if (err == noErr)

CSCopyColor (ioColor, csinfo.colorComponents);

} // copy

} // initinfo

} // ioColor

else

{ // ioColor pointer bad.
err = errMissingParameter;

}
}
else

{ // Color services suite was not available.
err = errPlugInHostInsufficient;

}

return err;

} // end HostCSConvertColor.

So to pick then convert the color to the document’s color space:

Figure 11: PickThenConvertColor routine

void PickThenConvertColor(GPtr globals)
{

OSErr err = noErr;

// Define some initial values for the picker to display:
int16 ioColors[4];
int16 ioSpace = plugIncolorServicesHSBSpace;

// Prompt string must be a Pascal string. So, for Windows, do:
#ifdef __PIWin__

Str255 prompt = "\x0CPick a color";

#else // Mac and Unix understand \p:
Str255 prompt = "\pPick a color";

#endif

// Set default HSB color. 1=Hue, 2=Saturation, 3=Brightness, 4=undefined:
CSSetColor(ioColors, 0, 255, 255, 0);
err = CSPickColor(prompt, &ioSpace, ioColors);
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 14

if (err == noErr)

{ // Picked the color successfully. Now convert it to the right space:
int16 resultSpace = CSModeToSpace(gStuff->imageMode);

CSConvertColor (ioSpace, resultSpace, ioColors);

// Now ioColors contain the colors in the documents color mode.
// Do something cool with them here.

}
else
{

// Some error occurred while picking. Examine and do something
// with it here.

}

} // end PickThenConvertColor.

Figure 12 is the values of the color components of the different color spaces.
It is excerpted from the Photoshop SDK Guide from Table B-1. Refer to the
Guide for more information.

Figure 12: colorComponents array structure

Color
space

color
Components[0]

color
Components[1]

color
Components[2]

color
Components[3]

RGB red from 0...255 green from
0...255

blue from
0...255

undefined

HSB hue from
0...359 degrees

saturation
from 0...255
representing
0%...100%

brightness
from 0...255
representing
0%...100%

undefined

CMYK cyan from
0...255
representing
100%...0%

magenta from
0...255
representing
100%...0%

yellow from
0...255
representing
100%...0%

black from
0...255
representing
100%...0%

HSL hue from
0...359 degrees

saturation
from 0...255
representing
0%...100%

luminance
from 0...255
representing
0%...100%

undefined
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 15

Gotchas

There are some gotchas in the Color Services suite that have resulted in less
use over the last years. One is the inability to convert arrays of spaces.

Another difficulty is a legacy bug where no matter what space you convert
to, the proc always returns paramErr (-50) and converts the requested color
to RGB. This has been fixed since Photoshop 3.0.4.

The other issue with the Color Services routine is that converting from some
spaces to others has not received consistent feedback from third-party
developers regarding its validity. Particularly, Lab and XYZ space conversions
have been questioned. Unfortunately, those spaces are defined differently in
multiple reference guides, and, where one developer might report bad
output, another reports those same numbers are exactly what is expected
from that space. (Lab, for instance, is based on visual acuity readings of a
human subject in a specified environment. A reading that is made to be for
the “average” human, with plenty of delta.) Due to that, and time
constraints, engineering has only been able to verify the top used spaces. You
can, with confidence, use and convert between any of these spaces:

RGB, HSB, CMYK, Gray, HSL

The other’s may be suspect. Try them and see if you get results consistent with
your expectations. Let the ADA know if you don’t. Especially, let the ADA
know what you expected if it differs from what you got.

Lab luminance
value from
0...255
representing
0...100

a chromanance
from 0...255
representing
–128...127

b chromanance
from 0...255
representing
–128...127

undefined

Gray
scale

gray value
from 0...255

undefined undefined undefined

XYZ X value from
0...255

Y value from
0...255

Z value from
0...255

undefined

Figure 12: colorComponents array structure (Continued)

Color
space

color
Components[0]

color
Components[1]

color
Components[2]

color
Components[3]
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 16

Color Picker plug-ins
With the Color Services suite now under your belt, Color Picker plug-ins
should be much more understandable. A Color Picker plug-in’s job is to create
its own User Interface (UI) to allow the user to pick a color, then return that
color in the same color array comprised of four unsigned 16-byte integers,
and an enum for what space the result is in.

Color space required for returning a color

While you can implement your own UI to allow a user to pick a color in any
space (such as six- and eight-value array spaces, as are becoming popular),
you must return a color in the known array space.

This makes sense since the definitons for the different plug-in color services
spaces are Photoshop defined, not plug-in defined. There would be no way
for a caller to know you’re returning a color in six-value space, for instance.
So you need to convert that color back into 4-value space, and assign it a
space in the Color Services color space enumerations.

Structure for passing color in and out of a picker

The Color Picker plug-in has a simple parameter block that includes a
PickParms structure that is defined as:

Figure 13: PickParms structure

typedef struct PickParms
{

int16 sourceSpace; // The colorspace the original color is in
int16 resultSpace; // The colorspace of the returned result

// Can be plugIncolorServicesChosenSpace.
// The original color on entry, the returned color on exit:
unsigned16 colorComponents[4];

// Pointer to prompt string:
Str255 *pickerPrompt;

} PickParms;

When your Color Picker plug-in is first called, this structure will contain the
incoming information for its source space, requested result space, source
color, and picker prompt string. You can choose to use or ignore any of those
values (for instance, if your plug-in does not need a prompt string).
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 17

Color Picker plug-in selectors

The Color Picker plug-in module only gets two selectors, vastly simplifying the
dispatching mechanism. They are:

pickerSelectorAbout (0)
pickerSelectorPick (1)

Obviously, you want to pop your about box on pickerSelectorAbout , and
pop your UI to pick a color on pickerSelectorPick .

Returning a color

It’s your responsibility to populate the PickParms structure with any new
color or space that the user has selected. If you don’t do anything, the source
color will be returned in the result space.

At minimum, you must copy resultSpace to sourceSpace . This is because
your plug-in may be called with resultSpace equalling
plugIncolorServicesChosenSpace , the command that tells your plug-in to
return resultSpace as the users’ selected space.

plugIncolorServicesChosenSpace makes no sense as a resultSpace
once execution is returned from your plug-in, especially if it returns from the
picker command with no error. So, at least, do:

gStuff->pickParms.sourceSpace =
gStuff->pickParms.resultSpace

return;

Popping your UI

Your user interface will be a platform-dependent modal dialog box. Any
thermometer or other active tools you’ll have to implement yourself. Make
sure you don’t call the Color Services with a
plugIncolorServicesChooseColor selector, as that will cause an endless
loop!

Example color picker main routine

Here’s a sample picker routine from the plug-in example NearestBase from
the Photoshop SDK. NearestBase simply cycles through four solid base colors
and returns the result in CMYK space:

Figure 14: DoPick routine
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 18

void DoPick (GPtr globals)
{

// Set result space to CMYK (see PIGeneral.h for valid spaces):
gStuff->pickParms.resultSpace = plugIncolorServicesCMYKSpace;

switch (gCount % 4)

{ // Cycle through four cases:

case 0: // red
gStuff->pickParms.colorComponents[0] = 255 * 0x101;
gStuff->pickParms.colorComponents[1] = 0 * 0x101;
gStuff->pickParms.colorComponents[2] = 0 * 0x101;
gStuff->pickParms.colorComponents[3] = 255 * 0x101;

break; // 0

case 1: // green
gStuff->pickParms.colorComponents[0] = 0 * 0x101;
gStuff->pickParms.colorComponents[1] = 255 * 0x101;
gStuff->pickParms.colorComponents[2] = 0 * 0x101;
gStuff->pickParms.colorComponents[3] = 255 * 0x101;

break; // 1

case 2: // blue
gStuff->pickParms.colorComponents[0] = 0 * 0x101;
gStuff->pickParms.colorComponents[1] = 0 * 0x101;
gStuff->pickParms.colorComponents[2] = 255 * 0x101;
gStuff->pickParms.colorComponents[3] = 255 * 0x101;

break; // 2

case 3: // black
gStuff->pickParms.colorComponents[0] = 0 * 0x101;
gStuff->pickParms.colorComponents[1] = 0 * 0x101;
gStuff->pickParms.colorComponents[2] = 0 * 0x101;
gStuff->pickParms.colorComponents[3] = 0 * 0x101;

break; // 3

default: // Unsupported, "exercise" error message.
gResult = pickerBadParameters;
break;

} // Switch gCount.

gCount++;

} // end DoPick.
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 19

Color Picker Caveats

There are some things you’ll want to watch out for when you write your own
Color Picker.

Color Pickers are plug-ins called by plug-ins

Whenever the user clicks on a swatch or a foreground or background color,
the chosen Color Picker is displayed. This means your plug-in’s UI is called, if
the user has selected it in the General Preferences window.

Your Color Picker plug-in, however, can also be called from another plug-in.
As you’ve seen in the previous section on the Color Services suite, a plug-in
developer can ask the suite to pop the current Color Picker and return a color.
This can get you into a precarious position, having one plug-in being called
from another. Here are some things to watch out for, in that event:

1. On the Macintosh, if you are working with resources you will have a
couple extra resource forks open besides the application’s. You’ll have
the calling plug-in’s resource fork open, as well as your Color Picker
plug-in’s. Make sure if you’re using string, icon, or any other resources
that you use the toolbox call Get1Resource() instead of
GetResource , which will use the currently active resource and drop
through the resource chain, instead of just searching one resource
deep.

2. Photoshop is memory intensive, and it’s more than likely that your
Color Picker plug-in is being called from a memory-intensive plug-in,
such as a Filter plug-in. Be as conservative with your memory usage as
possible, and mind the maxData value carefully and stick to the rule of
only using half of it and leaving half of it free for transient operations.

3. The Color Services suite is still available to you to do any sort of
conversions, sample grabbing, or special color returning. This makes
sense if you want to paint on your UI then grab sample colors from it.
However, do not call the Color Services suite with
plugIncolorServicesChooseColor . Since you’re already the active
Color Picker, you may have been invoked by the Color Services suite in
the first place. Calling it again to choose a color will result in an endless
loop.
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 20

Other issues and future implementation

Support for 16bpc color

16bpc, stands for 16-bits-per-channel color, which is supported in some of the
modes such as RGB48 and GrayScale16 .

As Photoshop matures its color services as a whole, you’ll see more deep color
references and additional functionality to deal with those new color spaces.
Adobe is very committed to pushing all their applications to include more
deep color, and similar critical color features, with every new version.

Next issue
Next issue we’ll delve into the new selection modules and the ChannelPorts
callback suite, and what it took to make a plug-in that could return a path in
the shape of a musical note.

###
Adobe Technical Journal Color Services and the Color Picker Plug-in Rev. 2August 10, 1997 21

	Introduction Color Services and the Photoshop 4.0 ...
	Refer to the SDK
	Macintosh or Windows?

	Color Services Suite
	Gotchas

	Color Picker plug-ins
	Color Pickers are plug-ins called by plug-ins

	Other issues and future implementation
	Next issue

